Course Type	CourseCode	Name of the Course	L	Т	P	Credits
DC	NMEC525	Additive Manufacturing	3	1	0	4

Course Objective

Toprovidedetailedunderstandingofadditivemanufacturingprocesses. The prospect of future research will also be discussed in the course which will encourage the PG students to carry out research in the advancearea.

Learning Outcomes

Upon successful completion of this course, students will:

- Broadunderstandingof AdditiveManufacturing processesusing different technologies.
- StudentswillbeabletothinkaboutthepossibilityofcombiningdifferentprocesstodevelopmoreefficientAMprocess.
- It willhelp thestudents to select the best process among various alternative.

Unit No	Topics to be Covered	Lecture Hours + Tutorial Houirs	Learning Outcome		
1	Introduction, ASTM classification, and development of Additive Manufacturing, Applicationsofadditivemanufacturinginrapidprototyp ing, rapid manufacturing, rapid tooling, repairingand coating. Generalized AM Process Chain,	6+2	Understanding the evolution and need of AM processes. It will develop the ability of select the process for particular application.		
2	VAT Photopoymerization Process (VPP): Introduction, VPP materials, Photopolymerization process modelling, Vector scan VPP machines, Scan Patterns, Mask Projection VPP processes, 2-p VPP, Process Benefits and drawbacks, Numericals	6+2	Understanding the basic principle of curingtype AM process. The students will learn the pros & consoftheseprocesses and their applications.		
3	Powder Bed Fusion (PBF): Introduction, Materials, Powder Fusion Mechanisms, Metal and ceramic part fabrication, process parameters and analysis, Powder handling, PBF process varients, Process Benefits and drawbacks, Numericals Directed Energy Deposition (DED): Introduction, Process description, Material Delivery, different DED systems, process parameters, Process-structure-properties relationship Process Benefits and drawbacks, Numericals	10 + 2	Understanding of thermal bas ed AM processes The students will learn the importance of controlled high energy source to manufacture the complex profile components.		
4	Material Extrusion Process (MX): Introduction, Basic principle, Plot and path control, Materials, Different machine configurations, BioExtrusion, Process Benefits and drawbacks, Numericals.	4+2	Understanding the basic principle of extrusion based AM process. The students will learn the basic path control during FFF.		

	TOTAL	42 + 14T	
	Post- ProcessinginAdditiveManufacturing:Supportmateria Iremoval,improvementofsurfacetexture,accuracy and aesthetic; property enhancements.		
7	Pre-Processing in Additive Manufacturing: Preparation of 3D- CADmodel, Reverseen gineering and Reconstruction of 3D-CAD model, Part orientation and support generation, different file formats, problems with STL files, STL errordiagnostics, Slicing and Generation of codes for tool path,	6+2	The students willlearn aboutthe pre and postprocessing requirements of different AM processes.
6	Sheet Lamination Process: Introduction, Materials, Material Processing fubdamentals, Ultrasonic AM, Friction Stir AM, Process Benefits and drawbacks, Numericals	4+2	Understanding the basic principle of solidlaminatedbased AM process. The students will learn the varient of process based on material type.
5	jetting, material process fundamentals, cold spray, process modelling, process parameters, Process Benefits and drawbacks, Numericals. Binder Jetting: Introduction, Materials, Process variations, BJT machines, Process Benefits and drawbacks,	6+2	principle of jetting based AM process. The students will learn the basic rprinciple of both material and binder jetting process.

Textbooks:

- 1. Gibson, I, Rosen, D W., and Stucker, B., Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2015
- $2. \quad Rafiq Noorani, Rapid Prototyping Principles \ and Applications, Wiley John Wiley \& Sons \ Inc.$

Reference books:

- 1. Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Principles and Applications: Fourth EditionofRapid Prototyping, World Scientific Publishers, 2014
- 2. ChuaC.K., LeongK.F., and LimC.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010
- 3. Gebhardt A., ``Rapid prototyping'', Hanser Gardener Publications, 2003
- 4.LiouL.W. andLiouF.W., "RapidPrototypingandEngineeringApplications:Atoolboxforprototype development", CRC Press, 2007